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ABSTRACT

A comprehensive modal emissions model has been
developed and is currently being integrated with a
variety of transportation models as part of
National Cooperative Highway Research Program
Project 25–11. Second-by-second engine-out and
tailpipe emissions data were collected on 340 light-
duty vehicles, tested under “as is” conditions.
Variability in emissions of CO2, CO, HC, and NOx

were observed both between and within groups
over various driving modes. 

This paper summarizes initial statistical analysis
and model validation using bootstrap validation
methods. The bootstrap methodology was shown
to be a valuable tool during model development. A
significant positive bias (overprediction) in NOx

during higher speed driving was identified in
CMEM v1.0 and eliminated in CMEM v1.2.

INTRODUCTION

Measurements of automobile tailpipe emissions at
second-by-second time resolution provide a statis-
tically challenging data set for modeling and analy-
sis. Emissions can vary by an order of magnitude
within the space of a few seconds, with the
response frequently nonlinear, due to enrichment
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or enleanment of the air-fuel mixture. Figure 1 pre-
sents an emission trace from a representative, nor-
mally operating vehicle to illustrate the large
differences in magnitude of tailpipe emissions over
the driving schedule. 

Enrichment occurs in modern computer-con-
trolled vehicles based on proprietary engine con-
trol strategies. The computer enriches the air-fuel
mixture at high power to protect the catalytic con-
verter from heat damage, resulting in short-term
spikes in emissions. The size and timing of the
increases in emissions vary from vehicle to vehicle,
even for identical models. Enleanment occurs in

some modern computer-controlled vehicles during
coastdown and braking events. In normal powered
driving, the amount of condensed fuel on the walls
of the intake manifold is in rough equilibrium with
the addition of fresh condensate from fuel injection
and with the loss by evaporation into the air mov-
ing into the cylinders. The amount of fuel on the
walls depends to some extent on the recent history
of fuel injection, that is, the recent power level.
When engine power is negative, there is still
significant air-flow but little or no fuel injection.
The condensed fuel will be removed by evapora-
tion over a period of seconds and will pass through
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the cylinders. The critical fact is that during these
events the fuel-air ratio is typically very lean, so
lean that there is little or no combustion. In this
case, hydrocarbon (HC) emissions can become
quite high relative to normal operation. Second-by-
second changes in emissions can occur during con-
stant speed cruising, due in part to small changes in
throttle position that, in turn, affect manifold air
pressure without affecting vehicle speed. 

In addition to these large differences in emis-
sions for individual vehicles during driving, there
are large differences in emissions from vehicle to
vehicle. Changes in emissions behavior under dif-
ferent driving conditions occur because of changes
in vehicle-emissions control technology. Large
reductions in the emission of carbon dioxide
(CO2), carbon monoxide (CO), hydrocarbon
(HC), and nitrogen oxides (NOx) have been
achieved over the past 25 years, resulting in great
differences in emission rates between vehicle/tech-
nology groups (Calvert et al. 1993). 

In late 1995, the Bourns College of Engineering,
Center for Environmental Research and
Technology (CE-CERT) at the University of
California, Riverside undertook a cooperative
investigation with the University of Michigan and
Lawrence Berkeley National Laboratory in order
to develop a comprehensive modal emissions
model (CMEM). The overall objective of this
research project was to develop and verify a modal
emissions model that accurately reflects emissions
from light-duty vehicle (LDV), cars and small
trucks, produced as a function of the vehicle’s
operating mode. The model is comprehensive in
the sense that it will be able to predict emissions for
a wide variety of LDVs in various conditions (e.g.,
properly functioning, deteriorated, malfunction-
ing). The model is capable of predicting second-by-
second tailpipe and engine-out emissions and fuel
consumption for a wide range of vehicle/technolo-
gy categories. The principal sponsor of this project
is the National Cooperative Highway Research
Program, NCHRP, Project 25–11 (see An et al.
1997). CMEM is a physical, parameter-based
model requiring parameterization of many
processes involving the vehicle, engine, emissions
control system, and catalytic converter, and affect-
ing how the vehicle is driven. Many of the rela-

tionships must be approximated within the model,
and the parameters themselves are estimated from
measurement data subject to error. This model dif-
fers from other conventional emissions models in
that it is modal in nature: it predicts emissions for
a wide variety of light-duty vehicles over a wide
variety of driving modes, such as acceleration,
deceleration, and steady-state cruise. The two pri-
mary models currently in use are MOBILE, devel-
oped by the U.S. Environmental Protection
Agency, and EMFAC, developed by the California
Air Resources Board. Both MOBILE and EMFAC
predict vehicle emissions based in part on average
trip speeds and depend on regression coefficients
derived from a large number of trip average emis-
sion measurements for a driving schedule represen-
tative of “typical” driving. For more detail, see
Barth et al. (1996), Barth et al. (1997), and An et
al. (1997). Only emissions from light-duty vehicles
are considered in this paper. 

For model validation, the key question to answer
is whether the model predicts emissions with rea-
sonable accuracy and precision. Bornstein and
Anderson (1979) have pointed out the need for
communication between modelers and statisticians
in air pollution research. Since then, Hanna has
done considerable research into the development of
statistical methods for air quality investigations
(Hanna and Heinold 1985; Hanna 1988 and
1989). Of particular interest is his use of the nor-
malized mean square error (NMSE) methods for
estimating bias based on a percentile of observed
and predicted differences, as well as his application
of Efron’s bootstrap resampling methods to com-
pare different air pollution models (Efron 1982;
Efron and Tibshirani 1986). Bootstrap bias plots,
shape statistic plots, histograms of bias values,
bootstrap confidence interval length plots, and
maximum and minimum bias plots have also
recently been used in the context of validating a
complex modal emission model (Schulz et al.
1999).

In developing CMEM, several validation tech-
niques were used: 1) validation of intermediate
variables, such as modeled engine RPM against
observed RPM, 2) composite vehicle schedule vali-
dation, and 3) second-by-second individual vehicle
validation. Validation was undertaken on a sec-
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ond-by-second basis for individual vehicles to pro-
vide a robust data set on which to test the model
and to ensure that a sufficient number of vehicles
would be available for the bootstrap analysis. It
should be noted that although this validation is
accomplished at a second-by-second basis, the
model was intended for use on driving modes last-
ing ten or more seconds. This difference was nec-
essary for model development because of the need
to identify situations in which problems were
occurring. Practically speaking, many of the errors
will “average out” over a driving schedule.

The focus of this paper is the validation methods
employed on a second-by-second basis for use by
the modeling team in model diagnostics and model
improvements. The statistics used for model evalu-
ation on a second-by-second basis must be valid
under many possible distributions of emissions but
must also be easily understood by nonstatisticians.
In addition, while the initial validation presented in
this paper was conducted on two large groups of
vehicles, the methodology employed also needed to
be valid for analysis of model performance on the
individual vehicle/technology groups with 10 to 25
vehicles in each group. For these reasons, second-
by-second validation methods inspired by Hanna’s
work are described and applied to two versions of
the model. 

METHODOLOGY

Vehicle Recruitment and Testing

The gasoline powered light-duty fleet was divided
into 24 categories for vehicle recruitment, with
divisions based on vehicle type (car or truck), emis-
sions status (normal or high emitter), fuel control
technology, emission control technology, power-to-
weight ratio, and accumulated mileage. High-emit-
ting vehicles were defined as those having CO, HC,
or NOx emissions 1.5 or more times higher than
the certification standard for the vehicle. Vehicles
ranged in age from a 1965 Ford Mustang to a
1997 Dodge Ram pickup and represented all
major foreign and domestic auto manufacturers.
The vehicle/technology groups were chosen to
cover the range of vehicle technology types within
the gasoline powered light-duty vehicle fleet. A
total of 340 in-use vehicles were recruited and test-
ed, primarily from the South Coast Air Basin, with

a small subset brought in from other states.
Particular care was given to target forty-nine
state-certified vehicles, as well as California-
certified vehicles, to ensure the model was repre-
sentative of the national LDV population.
Vehicles were selected at random from the
Department of Motor Vehicles registration list
for Southern California. Recruitment was con-
ducted through a mailing to vehicle owners with-
in the 24 categories, but category sample sizes
were selected by model development needs rather
than population proportions. Once recruited, the
vehicles were tested on CE-CERT’s forty-eight-
inch electric chassis dynamometer using three
driving schedules: the Federal Test Procedure
(FTP), which the federal government uses to rep-
resent normal in-use driving; the US06 driving
schedule, which the federal government uses to
represent in-use hard driving; and the Modal
Emission Cycle (MEC), developed as part of
NCHRP Project 25–11 to measure emissions
during specific driving modes (Barth et al. 1996).
It should be noted that the third driving segment
of the FTP driving schedule and the US06 driving
schedule were not used in model development.
For this reason, they were used as independent
validation schedules. During testing, emissions of
CO2, CO, HC, and NOx were measured on a
second-by-second basis.

Time-Alignment of Data

To perform a meaningful second-by-second valida-
tion, the emissions test results first had to be time-
aligned. The time delay between the start of data
recording and the start of the vehicle is not auto-
mated and can vary by several seconds from one
vehicle to the next. Prior to the application of boot-
strap analysis to the vehicle data, all values were
time-aligned to reflect acceleration from a common
starting point. Small differences between the dri-
ving trace and the schedule speed trace are
inevitable during the test schedules, so the time
alignment is not perfect. Although some error can
arise when time-aligning the files to the nearest sec-
ond, it should be negligible when compared with
the deviations from the driving trace resulting from
human error. 
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Validation Statistics

A measure of closeness, called model bias but not
the same as the statistical definition of bias (a prop-
erty of an estimator of an unknown population
parameter) is given by

where yi is the i th observed emission value, ŷi is the
corresponding i th value predicted by the model,
and there are n observations in the sample. This is
consistent with the standard definition of bias his-
torically used in environmental pollution studies
(Zannetti 1990), but in the language of statistics it
is referred to as mean prediction error. If this bias
value is larger (smaller) than an acceptable prede-
termined cutoff value, then the model significantly
overpredicts (underpredicts). 

A point estimate of bias is useful, but statistics
are random quantities that vary from sample to
sample. Confidence intervals provide a better
description of a reasonable range of values for the
bias statistic. If the confidence interval (95%
confidence intervals are used in this paper) con-
tains the bias value of 0, then the model bias is not
significantly different from 0, and the model is per-
forming well. If the interval does not contain the
bias value of zero, the model may have some pre-
diction problems, thereby warranting further
investigation. 

In standard parametric statistical theory,
confidence intervals are constructed assuming the
statistic of interest follows a known distribution.
The assumed distribution is frequently a normal
distribution. These distributional assumptions are
valid for simple statistics like the mean and vari-
ance. Here, for bias, a mean is calculated, but it is
not the usual sample mean. Averaging involves
emission values predicted from the model, which
could have a strange, underlying distributional
form. Therefore, it is undesirable to assume that
bias follows a normal distribution since its true
form is unknown. Also, there is no obvious calcu-
lation to estimate the standard error of the bias.
For these reasons, the method of choice is the boot-

strap method to determine confidence intervals
(Efron and Tibshirani 1993).

The bootstrap algorithm can now be described
in detail in this context. The bootstrap sampling is
conducted at each time point in the driving sched-
ule with new sequencing of the bootstrapped sam-
ples. First, assume a sample of n paired
observations drawn from the population of interest.
The first value in each pair is the observed emissions
value, and the second value is the corresponding
predicted emissions value. To construct the first
bootstrap sample, a sample pair is chosen at ran-
dom from the original sample. Its values are record-
ed, and the selected pair is returned to the original
sample. A second pair is chosen at random from the
original sample, its values recorded, and is then
returned to the original sample. This is the second
pair of values in the first bootstrap sample. Pairs of
values are chosen from the original sample until the
first bootstrap sample contains n pairs and thus is
the same size as the original sample. In this fashion,
a random group of vehicles the same size as the
actual group is created. The first value of the bias
statistic can be calculated from these paired values. 

The second bootstrap sample is calculated in a
similar way to the first with a new randomization
of pairs chosen with replacement until there are n
pairs in the bootstrap sample. The second value of
the bias statistic is then computed. This procedure
is repeated until B bootstrap samples, each of size
n, have been drawn, and B bias estimates have been
calculated. B must be quite large in order to obtain
reasonably accurate results. For the present study, 
B = 1,000 is used. Of the 1,000 bias estimates cal-
culated, the 25th smallest bias estimate, or 2.5 per-
centile, is determined, as well as the 25th largest
bias estimate, or 97.5 percentile. The difference
between these two numbers is an approximate 95%
bootstrap confidence interval on the bias.

While there are other bootstrap methods for
establishing confidence intervals (Efron and
Tibshirani 1993), the percentile method is pre-
ferred for the present study due to its simplicity
and because the intervals can be asymmetric,
unlike traditional confidence intervals. Concerns
about potential accuracy and underprediction are
offset in this study by the number of vehicles con-
sidered, 340, as well as the number or replications
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of the procedure, 1,000. Consequently, for a given
constituent emitted on a specific driving schedule,
the 95% bootstrap confidence interval is calculat-
ed based on 1,000 replications for each second in
time over the length of the driving schedule. The
US06 driving schedule is about 589 seconds long,
resulting in 589 intervals with different random
sequences of vehicles. Formally speaking, these
intervals are not to be used for strict statistical
hypothesis testing. To do so could lead to over-
stated, erroneous conclusions. Informally speak-
ing, the plots are quite useful for summarizing the
available information in the data and for observing
underlying patterns and trends through time. Plots
of the length of the confidence intervals over time
are used as a measure of variability of the bias sta-
tistic. Wider intervals indicate more variability.
Narrower intervals indicate less variability.

In addition to the plots of bootstrap confidence
intervals, called bias bootstrap plots, other poten-
tially informative plots over time, such as plots of
the shape statistic, can be constructed (Efron and
Tibshirani 1993). The shape statistic is a measure
of skewness, which numerically describes the shape
of the distribution of the statistic of interest. 

RESULTS

Due to the large differences in emissions and the
possible differences in emissions behavior over dri-
ving modes, the normal-emitting (emissions less
than 150% of the vehicle’s certification standard)
and high-emitting (emissions greater than or equal
to 150% of the emissions standard) vehicles were
analyzed separately. Second-by-second bias plots
with bootstrap confidence limits were constructed
for CO2, CO, HC, and NOx after calculation of
model results. The US06 NOx results are presented
for CMEM v1.0 and CMEM v1.2. Differences in
CMEM v1.0 and CMEM v1.2 are described
below. The bias plots for CO2, CO, and HC fol-
lowed the same general pattern as those of NOx

but did not show large changes from CMEM v1.0
to CMEM v1.2 and are not presented here. NOx

results for CMEM v1.0 normal-emitting vehicles
and high-emitting vehicles are shown in figures 2
and 3, respectively. 

Figure 2 shows that the model overpredicts NOx

emissions to a small degree in normally operating
vehicles during the high-speed cruise section of the
US06 driving schedule. Figure 3 indicates that for
the high-emitting vehicles there is no model over-
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prediction for the high-speed cruise section.
Comparison of figure 2 and figure 3 also shows
that bias is more variable for the high-emitting
vehicles, apparent from the wider confidence limits
and greater range of average bias values from sec-
ond to second. This can be explained at least in
part by the higher levels of emissions for the high-
emitting vehicles and the higher variability in emis-
sions of high-emitting vehicles. Additionally, both
figures 2 and 3 suggest that the model overpredicts
emissions at the start of an acceleration event and
underpredicts them at the end of the acceleration
event. Thus, the observed pattern in bias indicates
that this version of the model may be inadequate
for detailed second-by-second analysis while still
appropriately capturing the intended range of
emissions on the total driving trace and for driving
modes. Driving modes are considered as individual
events such as acceleration, deceleration, and
steady-state cruising. For example, users of the

model would be interested in the total emissions
contribution of a vehicle accelerating onto the free-
way and not in emissions at the start and end of the
acceleration separately.

Due to the validation results discussed above,
modifications were made to the NOx components
of the CMEM model, leading to the establishment
of CMEM v1.2. NOx emissions predictions for
normal-emitting vehicles on the US06 using
CMEM v1.2 are presented in figure 4. Similar
results for the high-emitting vehicles are presented
in figure 5. The bootstrap results show the result-
ing changes in the model bias. Note that the over-
prediction of NOx in normal-operating vehicles at
the high-speed portion of the US06 has been elim-
inated (figure 4). However, the deceleration events
for which CMEM v1.0 exhibited no under- or
overprediction now do exhibit overprediction of
emissions, as seen in the positive values and nar-
row confidence bands around times 100 and 475.
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This indicates that CMEM v1.2 overpredicts NOx

on long deceleration modes for normal-operating
vehicles. These changes, while not perfect, repre-
sent a substantial improvement in the model pre-
diction accuracy for normal-operating vehicles
because the high levels of NOx in the high-speed
portions are much more important than the low
NOx levels produced in the deceleration events.

For the high-emitting vehicles, figure 5 suggests
that the changes to the model have affected predic-
tions of emissions at the high-speed portion of the
schedule. The overprediction in the high-speed
portions of the driving schedule is slightly lower
for CMEM v1.2 than for CMEM v1.0 (figure 3
versus figure 5), with CMEM v1.2 tending towards
underprediction of NOx on the high-speed driving
section. For CMEM v1.0, the confidence limits
include zero indicating no under- or overprediction
during the high-speed driving section, but for
CMEM v1.2 some parts of the high-speed section
do not include zero. The overprediction in NOx for
long deceleration events is also clearly visible on
the high-emitting vehicles around times 100 and
475 (figure 5).

CONCLUSIONS

The bootstrap technique has been proven to be a
useful method for graphically validating the pre-
dictions of CMEM on a second-by-second basis.
This paper has also shown the bootstrap bias plot
to be a useful tool for modelers during the model
development process. It provides both detailed and
summary information about the model’s accuracy
to facilitate model refinement. Using bootstrap bias
plots, it can be determined if the model is predict-
ing as well as desired, and if not, the bias plots
identify where the bias is occurring in the driving
schedule. Overall, the effects of model improve-
ments can be observed directly in the plots, lead-
ing, in the particular case described, to the
elimination of overprediction in NOx under high-
speed driving conditions for normal-operating
vehicles. In the case presented here, the bias plots
also identified unintended changes in model behav-
ior resulting from the changes to the model.

The technique described here has been used on
340 vehicles split into 2 groups: normal emitters
and high emitters. Differences in model bias were
observed between the two groups. Further com-
parisons of these vehicles on the basis of the other

36 JOURNAL OF TRANSPORTATION AND STATISTICS SEPTEMBER 2000

0 100 200 300 400 500 600
–0.03

–0.02

–0.01

0

0.01

0.02

0.03

0.04

0.05

Time (seconds)

Bias

FIGURE 4   US06 Normal Emitter Second-by-Second Average Bias

Speed trace
95% bootstrap confidence limits
Average bias



classification criteria, such as carburetor versus fuel
injection, could provide more valuable information
for improving model bias. In addition, further
research should be conducted to determine
whether other statistics or other bootstrap meth-
ods of determining confidence intervals on emis-
sions model predictions are more appropriate.

Finally, current efforts are focused on other
ways to compare different versions of emissions
models. Validation studies are targeting methods
used to compare model results on the basis of an
overall driving schedule in much the same way that
the vehicles are expected to be used in practice,
rather than on a second-by-second basis. 
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